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ABSTRACT
Implicit networks that describe latent entity relations have
been demonstrated to be valuable tools in information re-
trieval, knowledge extraction, and search in document collec-
tions. While such implicit relations offer less insight into the
types of connection between entities than traditional knowl-
edge bases, they are much easier to extract from unstruc-
tured textual sources. Furthermore, they allow the deriva-
tion of relationship strength between entities that can be
used to identify and leverage important co-mentions, based
on which complex constructs of semantically related entities
can be assembled with ease. One example of such implicit
networks are LOAD graphs, which encode the textual prox-
imity of location-, organization-, actor-, and date-mentions
in document collections for the exploration, identification
and summarization of events and entity relations. Here,
we present EVELIN as a graphical, web-based interface for
the exploration of such implicit networks of entities on the
example of a large-scale network constructed from the En-
glish Wikipedia. The interface is available for online use at
http://evelin.ifi.uni-heidelberg.de/.
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1. INTRODUCTION
Knowledge bases are invaluable sources of structured, dis-

crete relations between entities that have numerous appli-
cations in information retrieval and natural language pro-
cessing. Tasks such as search, disambiguation or question
answering can easily be augmented by structured entity re-
lations stored in knowledge bases such as YAGO, DBpedia,
Wikidata, or the Google Knowledge Graph. However, the
practical applicability of such resources depends on the ex-
istence of structured knowledge for the domain under in-
vestigation. In cases where this information is unavailable,
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implicit entity networks that can be extracted directly from
unstructured text have recently been shown to offer valu-
able support in information retrieval from large document
collections [16]. Based on a weighted network structure that
is extracted from entity co-occurrences in unstructured text,
these methods enable the use of established information re-
trieval approaches on a graph representation of the text (for
an early example of such an adaptation, see [12]).

As a result, implicit network approaches offer an impor-
tant augmentation that the inclusion of knowledge bases
alone cannot provide. While the integration of knowledge
bases in search and retrieval tasks introduces additional, ex-
ternal knowledge, implicit networks induce a graph struc-
ture exclusively from the intrinsic information that is con-
tained in the documents. Thus, implicit networks are appli-
cable to arbitrary corpora of unstructured text, where they
support exploratory measures. In combination with knowl-
edge bases and entity linking techniques, implicit networks
of entities can serve not only as indices and data structures
for the occurrence of entity mentions in the underlying doc-
ument collection, but also aid in the construction and ex-
ploration of complex entity structures that directly enable
the identification of events in which these entities partici-
pate. Therefore, implicit networks stand to augment search
applications in document collections when entities are both
the input as well as the output of queries, and can be used
in summarization as well as provenance detection. In this
paper, we present EVELIN as a comprehensive system that
utilizes such entity networks for search, exploration and ad
hoc summarization on an underlying document collection.

Contributions. We provide EVELIN as an online web
interface for searching entities and events in implicit entity
networks, thus offering much of the functionality of knowl-
edge graphs on unstructured document collections. To the
best of our knowledge, it is the first holistic system that takes
full advantage of the versatility of implicit entity networks
and allows entity exploration, summarization, and prove-
nance retrieval. Furthermore, it enables the composition of
complex entity structures for event detection and summa-
rization. Since the underlying graph can be constructed for
arbitrary document collections, EVELIN is not limited to
one specific corpus. We provide the system online as a web
service1 that runs on the implicit network extracted from
the textual content of the English Wikipedia, with entity
links to Wikidata as a knowledge base.

1EVELIN is available online, along with a user’s manual:
http://evelin.ifi.uni-heidelberg.de



2. RELATED WORK
Over the last years, a number of applications have been

proposed that cover similar use cases. One of the first such
systems is Broccoli, which extends SPARQL queries with
textual co-occurrences [4], thus combining full text with
knowledge base search on Wikipedia. With a focus on news
articles, STICS uses entity auto-completion to suggest re-
lated entities for queries [8], but does not include tempo-
ral information beyond the publication date. The system
has seen a couple of updates, including the visualization of
trends in entity occurrences [7]. More recently, it was up-
dated to include weighted co-occurrences of entity n-tuples
for auto-completion suggestions [13]. Several other systems
also focus on search and visualization of streams or col-
lections of news articles, often in relation to entities in a
knowledge base. Exposé introduces a time-aware retrieval
approach for organizing news articles and linking them to
Wikipedia as an event repository [11]. The approach is
mostly focused on a temporal order but includes entities as
facets for filtering the results. In a similar approach, Contex-
tualizer serves as an interface for browsing news documents,
by retrieving candidate documents based on user-selected
keywords that are then ranked by contextual similarity and
temporal aspects and linked to external Wikipedia informa-
tion as a context [19]. Geared towards large-scale aggrega-
tion of news events, Event Registry is focussed on news arti-
cles, named entity annotation and date identification [9]. To
this end, articles are clustered by contained named entities
and content to obtain aggregate events. NewsStand offers
a geographic event-centric visualization and exploration of
news topics, including spatial keyword distributions [18]. It
has been extended by a large number of additional aspects
such as CrimeStand or brands. With a similar focus on
the geographic aspect, Frankenplace is designed as a search
interface for interactive thematic maps [1]. It provides geo-
graphic context for queries to an underlying document col-
lection and utilizes topic modelling to leverage both themes
and locations as dimensions for the exploration to search
results. Expedition is a system with a focus on scholarly
search [14], which filters and refines documents interactively
on a timeline based on entity selections. Similarly, Digital-
Historian is a stand-alone tool aimed at temporal and entity-
centric corpus exploration in the Digital Humanities [6]. In-
foScout allows augmented, subject-centric investigation and
is thus focussed on person mentions [10]. Based on an un-
derlying knowledge base, XKnowSearch infuses traditional
or multilingual keyword searches with structured informa-
tion by introducing an intermediate query entity graph layer
that maps keywords to entities, which are then used in the
search [20]. Similarly, SemFacet combines search capabili-
ties with knowledge base support for faceted search using
document meta data [3].

Two recent approaches are most closely related to the
work presented here. Ceroni et al. introduce a system for de-
tecting and pinpointing events in document collections based
on the co-occurrences of named entities [5], but focus on the
task of validating event occurrences in the collection. The
Entity Relatedness Graph is designed for the exploration of
entity relations [2]. It uses the concept of entity similarity
for ranking adjacent entities, but unlike our approach relies
on the Wikipedia link structure for learning semantic rela-
tions between entities instead of using co-occurrences inside
the document collection.

Figure 1: Schematic view of the LOAD graph ex-
traction process from a document collection.

3. ENTITY GRAPH AND QUERY MODEL
In the following, we give a brief overview of the underlying

data model and introduce the different algorithms that are
used to retrieve information from the graph.

Data Model. EVELIN is designed as an interface for
queries to the LOAD model, which is an entity co-occurrence
graph representation of large document collections that was
originally presented for event detection in unstructured
texts [16]. We introduce the model only briefly and instead
focus on the improved query functions. In the following,
the neighbourhood N(v) denotes the set of all nodes in the
graph that are connected to a given node v.

The LOAD graph is a representation of the co-occurrences
of the named entity types locations L, organizations O, ac-
tors or persons A, and dates D in the text. Remaining
non-stop words are included as terms T , along with the con-
taining sentences S and pages P (for a schematic overview,
see Figure 1). Connectivity information for sentences and
pages is binary, i.e., a sentence or page either contains an
entity or it does not. In contrast, weights ω of edges between
entities x ∈ X and y ∈ Y are derived from the textual dis-
tances of their mentions as

ω(x, y) :=

(
log

|Y |
|N(x) ∩ Y |

)∑
i∈I

exp(−δi(x, y))

where δi(x, y) denotes the distance in sentences between the
occurrence of x and y in some instance i, and I is the set
of all such co-occurrence instances (for the full derivation,
see [16]). The weights that are generated in this way encode
a directed importance of one entity for another. The LOAD
graph can thus be used to answer queries about meaningful
entity co-occurrences in the underlying document collection.
By identifying events as composite subgraphs that consist of
the participating entities, this ultimately allows the formu-
lation of queries for events.

A query 〈X|Q,n〉 for retrieving information from the graph
then consists of a target set X ∈ {L,O,A,D, T, S, P}, an in-
teger n specifying the number of entities to retrieve from X,
and a set of query entities Q ⊆ L∪O∪A∪D∪T . To answer
a query, the aim is then to order all entities in X based on
some ranking r that evaluates the importance of their rela-
tions to query entities q ∈ Q by using the graph structure.
The answer to a query is a set Xn ⊆ X of the n top-ranked
entities in X such that r(xn) > r(x) ∀xn ∈ Xn, x ∈ X \Xn.
In the following, we briefly describe the ranking approaches
for the different target sets.

Entity Ranking (X ∈ {L,O,A,D, T}). For entities as
target sets, we can distinguish two different scenarios. First,
if the set of query entities contains only a single entity q



Figure 2: Schematic view of the data processing pipeline and system architecture. We use Wikipedia as
textual input data for this demonstration, but the process can be applied to any document collection.

(i.e., |Q| = 1), then we rank entities in X by the weights
of edges starting at q in the graph and let r(x) = ω(q, x).
If q and x are not connected, then we simply set r(x) = 0.
This ranking directly retrieves the most important entities
x in the neighbourhood of entity q. To obtain a score in
the interval [0, 1], we normalize with the maximum observed
score ωmax to any entity in the result set

ωmax := max
x∈N(q)

ω(q, x).

Second, if we have multiple query entities (i.e., |Q| > 1),
then we employ a two-tier ranking system, in which we de-
compose the ranking score into two components r = c.s.
This allows us to rank by the first component c and break
ties according to the second component s. Here, c denotes
the cohesion of the subgraph that is induced by the query
entities. Formally, we define c as the number of query enti-
ties that are connected to a target entity beyond the first,
i.e., c(x) := |N(x)∩Q|−1. Thus, we have c ∈ {0, ..., |Q|−1},
with higher values indicating a higher connectedness of a tar-
get entity to the query entities. For the second component,
we simply use the normalized sum of edge weights

s(x) :=
1

smax

∑
q∈Q

ω(q, x)

where smax is the maximum obtained sum of scores such
that s ∈ [0, 1]. For the resulting ranking score we can thus
set r := c+s and observe that r ∈ [0, |Q|], with higher scores
denoting a higher importance. The single entity query then
corresponds to the special case c = 0.

Sentence Ranking (X = S). Obtaining a ranking for
sentences is less direct than a ranking for entities, since the
edge weights between entities and sentences are binary and
there is no notion of weight to these edges. Therefore, we
employ a slightly different two-component ranking scheme
r = c.s. The first component is identical to the case of entity
ranking and denotes the cohesion, i.e., c is the number of
query entities that are contained in a sentence x. To obtain
the second component, we consider the k most important
terms for each query entity and assign to each sentence a
score that indicates how many of these terms it contains.
Formally, let TQ be the union of the k most important terms
for all query entities in Q. Then we obtain s as the fraction
of important terms that are contained in the sentence

s(x) :=
|N(x) ∩ TQ|
|TQ|

Similar to the case of entity rankings, the combined ranking
score is then the sum of the individual scores c and s.

Page Ranking (X = P ). For pages, a ranking can be
obtained in almost the same way as for sentences. Here,
we observe that each sentence belongs to exactly one page.
Thus, we arrive at a ranking of pages by computing a rank-
ing of sentences according to the query entities and then
propagating the scores from the sentences to their respec-
tive pages. Using the same two component score as above,
we define the cohesion of a page p as the maximum cohesion
of any of its sentences c(p) := max c(x) for all x ∈ p. For
the second component, we sum over the contributions of all
individual sentences and obtain s(p) =

∑
x∈p s(x). After

normalizing with the maximum of all s(p) and combining
r = c+ s, we again obtain a score r ∈ [0, |Q|].

Subgraph Extraction. As an exploratory visualization
tool, we also consider an experimental implementation of
subgraph extraction. With the aim of highlighting the im-
mediate neighbourhood of a given set of query entities, we
first include all query entities in the subgraph. To discover
additional nodes, we rely on entity queries as defined above.
Specifically, we rank entities in each of the sets L, O, A,
D and T according to their importance for the query en-
tities. Then, we select the three highest ranked entities in
each set that have a cohesion of c ≥ 1 and include them in
the graph. In a final step, we extract all edges between the
selected nodes and include edge weights that can be used to
visualize the importance of relations.

4. SYSTEM ARCHITECTURE
Based on the above methodology, we describe the system

architecture for extracting the data and processing queries
on the resulting entity network in the following. For an
overview of the system architecture, see Figure 2.

Data Pre-processing. The extraction of a LOAD net-
work is possible from any document collection, as long as
named entities can be identified. To demonstrate the fea-
sibility of the approach for large document collections and
to provide comprehensive query choices, we use the unstruc-
tured text of all English Wikipdia articles (dump of May 1,
2016). This has the added benefit of allowing us to use Wiki-
pedia links to identify named entities, which largely avoids
the imprecision inherent to named entity recognition. The
problem of only the first mention of an entity in a Wiki-
pedia page being linked is corrected by a subsequent string
search. We link discovered entities to Wikidata and classify
them by directly classifying Wikidata entities (for further
details on entity classification of Wikipedia links through
Wikidata, see [15]). For the extraction of dates we use Hei-
delTime [17]. We construct a LOAD network from all dis-
covered entities of types location, organization, actor and



Figure 3: The EVELIN interface. Initial view with search bar and multiple query options (left), ranked
results of a query with refinement options (center), and experimental subgraph visualization (right).

date with a maximum window size of 5 sentences by using
the default LOAD implementation [16]. The resulting graph
is constructed from 4.5M Wikipedia articles with 43.6M sen-
tences that have at least one entity, containing 2.0M named
entities, 5.2M distinct terms, and 1.3B edges.

Application Layer. An in-memory representation of
a LOAD graph of the entire English Wikipedia is possi-
ble and allows extremely fast queries in the order of mil-
liseconds. However, due to the high memory requirements
(around 200GB for full efficiency), this is infeasible for a
long-running, non-commercial application. Therefore, we
use as demonstration server a Core i7 with 32GB main mem-
ory and an SSD drive. The network data is stored in a
MongoDB, with separate collections for entities, terms, sen-
tences, pages and edges. Entities are enriched with Wikidata
information to obtain entity descriptions and canonical la-
bels. A text index on the English canonical label is used for
searching entities in the database by label and compiling a
list of entity suggestions to the user based on input strings
(an alternative solution is the use of prefix tries [7]). We
rank entity suggestions by the text match score and break
ties by the number of connected sentences in the network
(i.e., by popularity). Graph edges are stored with precom-
puted weights. For edges that involve sentences, we use a
collapsed storage format that contains both the sentence and
the respective page of the entity or term. The query pro-
cessing routines described in Section 3 are implemented in
Java, and enable query processing speeds in the order of a
few seconds or less for all but the experimental subgraph
queries. To allow the application to serve queries from mul-
tiple users simultaneously, query processing is not parallel
and allocates one thread per query. To avoid system over-
load in the case of multiple users that spam queries, we use
an internal mapping of queries to browser fingerprints and
limit the number of active queries per user.

Presentation Layer. The web interface is implemented
via HTML and JavaScript and serves two primary purposes:
classifying input terms and entities according to their entity
type, and visualizing the output of ranked entity lists and
subgraphs. For handling entity input and sending queries to
the application layer, we use jQuery and pass entity infor-
mation in both directions as JSON objects. The Bootstrap
libraries2 and Mustache web templates are used for the re-
sponsive layout and for displaying data tables. To recognize,
classify and color input entities as they are entered, we use

2http://getbootstrap.com

the tags-input and typeahead libraries of Bootstrap, which
we extend by adding the required functionality for the color
coding of entities. The interactive visualization of subgraphs
is handled by the D3 JavaScript library3, which uses a com-
bination of HTML, CSS, and SVG to display data. Graphs
are visualized with a force-directed layout. The web server
itself is realized on top of the Java Spark micro framework4

and is directly integrated with the application layer into a
single application. Communication between user interface
and server is built on AJAX and uses JSON for transmit-
ting entity information in both directions (i.e, input query
entities, output entities, and graph data). Examples of the
interface, the search results, and a subgraph visualization
are shown in Figure 3.

5. DEMONSTRATION SCENARIO
The demonstration is designed as a tour that organically

guides the audience through the core functionality of the
EVELIN interface and consists of three major stages. Al-
ternatively, members of the audience have the option of in-
teractively following the process and exploring the interface
independently on their mobile devices.

Entity Exploration. Beginning with a single entity,
such as a person or location, we demonstrate EVELIN’s ca-
pability of discovering related entities. By adding newly
discovered entities to a query or removing less interesting
entities, we show how a single-entity query can grow dynam-
ically into the exploration of an event or a person’s timeline.
We highlight how such event candidates of multiple query
entities can be described and understood through term rec-
ommendations by the system.

Entity Summarization. Once an interesting entity com-
bination is identified by the audience, we demonstrate the
multi-entity summarization capability that is inherent to
sentence queries. Based on the combination of entities that
was discovered in the exploratory phase, we use EVELIN to
retrieve a ranking of sentences from the entire corpus that
best describes the selected entities as a composite.

Entity Linking. In a final step, we show how the sys-
tem can be used to obtain provenance information for fur-
ther studies, by effectively linking a set of entities to pages
from the underlying document collection that provide the
context of their co-occurrence. The entire demonstration
process thus guides the audience from a single input entity

3https://d3js.org
4http://sparkjava.com



to a description and exploration of its relations to adjacent
entities and the events that jointly describe them.

Subgraph Exploration. As an alternative, exploratory
tool we also demonstrate the extraction of subgraphs around
entities. While less precise than the entity-centric searches,
a subgraph exploration can help the audience to obtain a
first impression of an entity’s relations and where to begin
in a search. Thus, we use this aspect as an augmentation
and visualization of the search process where appropriate.

Hardware requirements. The hardware requirements
for the demonstration are minimal. Since the demonstration
is realized via a web interface to a remote server application,
the only requirement is a stable Internet connection. For
the presentation of the interface, a laptop is entirely suffi-
cient, although the presence of a larger screen or monitor
enhances the experience for the audience, if available. Addi-
tionally, the audience is encouraged to explore the interface
website on their own mobile devices, with a supplementary
poster serving as a tutorial. In case of network unavailabil-
ity, a downscaled graph that is constructed from a subset of
Wikipedia pages will be available for offline demonstration.

6. CONCLUSION
With EVELIN, we presented a novel and comprehensive

way of searching for entity-related information in unstruc-
tured, large-scale document collections that leverages the
intrinsic relations of entities in the documents. Instead of
relying on term-, entity-, or provenance data alone, we show
how to combine all three data types organically in a single
graph structure that can be used to navigate and explore
the underlying document collection. As a result, we are
able to retrieve entity rankings as well as descriptive sen-
tences and pages, which allows us to induce and query a
knowledge graph-like structure on otherwise unstructured
document collections.
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